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Selenose provides a set of Selenium related plugins/tasks for nose/django-jenkins developed by ShiningPanda.

The use of these plugins/tasks is detailed bellow, but let’s have a look on the installation process first.
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http://seleniumhq.org/
http://code.google.com/p/python-nose/
http://pypi.python.org/pypi/django-jenkins/
https://www.shiningpanda.com
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CHAPTER 1

Installation

On most UNIX-like systems, you’ll probably need to run these commands as root or using sudo.
Install selenose using setuptools/distribute:

$ easy_install selenose

Or pip:

S pip install selenose

It can take a while as Selenium server’s jar is downloaded on the fly during installation.

If you plan to use django-jenkins, note that Django 1.4+ is required (support for in-browser testing frameworks).



http://pypi.python.org/pypi/setuptools/
http://pypi.python.org/pypi/distribute/
http://pypi.python.org/pypi/pip/
http://pypi.python.org/pypi/django-jenkins/
https://docs.djangoproject.com/en/dev/releases/1.4/#support-for-in-browser-testing-frameworks
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CHAPTER 2

Nose

Selenose provides two Selenium related plugins for nose:
* Selenium Server Plugin starts a Selenium Server before running tests, and stops it at the end of the tests.

e Selenium Driver Plugin provides a Selenium Web Driver to the tests.

2.1 Selenium Server Plugin

This plugin starts a Selenium Server before running tests, and stops it at the end of the tests.
To enable it, add ——with-selenium-server to the nose command line:

S nose —--with-selenium-server

You can also add the with-selenium-server option under the nosetests section of the configuration file
(setup.cfg, ~/.nosercor ~/nose.cfqg):

[nosetests]
with-selenium-server = true

Options for Selenium Server can be found by downloading its jar and typing:

java -jar /path/to/seleniumserver/libs/selenium-server-standalone-X.X.X.jar -h

Most common options are:
e —port <nnnn>: the port number the Selenium Server should use (default 4444),
e —log <logFileName>: writes lots of debug information out to a log file,
* —debug: enable debug mode.

To set the server options, add a selenium-server section to the configuration file (setup.cfg, ~/.noserc or
~/nose.cfqg). Option names are obtained by removing the initial dash, for instance to run:

java —jar selenium-server-standalone-X.X.X.jar -debug -log selenium-server.log

Add the following options to the configuration:

[selenium—-server]
debug = true
log = selenium-server.log

In your test, just create a new Remote Web Driver calling the server and that’s it:



http://seleniumhq.org/
http://code.google.com/p/python-nose/
http://seleniumhq.org/docs/05_selenium_rc.html#selenium-server
http://seleniumhq.org/docs/03_webdriver.html
http://seleniumhq.org/download/
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import nose
import unittest

from selenium import webdriver
class TestCase (unittest.TestCase) :

def test (self):
driver = webdriver.Remote (desired_capabilities=webdriver.DesiredCapabilities.FIREFOX)
try:
driver.get (' http://www.google.com’)
# Your test here...
finally:
driver.quit ()

r .

if name == '__main
nose.main ()

2.2 Selenium Driver Plugin

This plugin provides a Selenium Web Driver to Selenium tests.

2.2.1 Flag Selenium tests

This plugin only provides Web Drivers to Selenium test. To declare a Selenium test:
* Either make your test case inherit from selenose.cases.SeleniumTestCase,
* Orsetaenable_selenium_driver flagto True:

class TestCase (unittest.TestCase) :
enable_selenium driver = True

2.2.2 Enable the plugin

To enable this plugin, add ——with-selenium-driver on the nose command line:

S nose —--with-selenium-driver

You can also add the with-selenium-driver option under the nosetests section to the configuration file
(setup.cfg, ~/.nosercor ~/nose.cfqg):

[nosetests]
with-selenium-driver = true

But enabling it is not enough, a Web Driver environment is also required.

2.2.3 Web Driver environment

An environment declares all the necessary parameters to create a new Web Driver.

To create a new environment sample, add a selenium-driver:sample section to the configuration file
(setup.cfqg, ~/.noserc or ~/nose.cfqg) with at least a webdriver option:
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[selenium-driver:sample]
webdriver = firefox

This webdriver option defines the Web Driver to use. Here are the available values:

¢ chrome for Chrome, allowing the following options in configuration:

— executable_path (optional): path to chromedriver executable,

— port (optional),

— desired_capabilities (optional),

» firefox for Firefox, allowing the following options in configuration:

— timeout (optional),

¢ ie for Internet Explorer, allowing the following options in configuration:

— port (optional),
— timeout (optional),

¢ remote to delegate to a Selenium Server (started by Selenium

Server Plugin?), allowing the following options in configur:

— command_executor (required): url of the server (http://127.0.0.1:4444/wd/hub by

default),

— desired_capabilities (required): the desired browser, it could be the lower case field name of
selenium.webdriver.DesiredCapabilities such as firefox, htmlunitwithjs...

or a comma separated key/value list such as browserN

ame=firefox,platform=ANY

To enable an environment, add ——selenium—driver on the nose command line:

S nose —-with-selenium-driver --selenium-driver=sample

You can also add the selenium-driver option under the nos
(setup.cfg, ~/.nosercor ~/nose.cfqg):

[nosetests]
with-selenium-driver = true
selenium-driver = sample

[selenium—driver:sample]
webdriver = firefox

Selenose also provides a set of predefined but overridable environments:

[selenium—-driver:chrome]
webdriver = chrome

[selenium—-driver:ie]
webdriver = ie

[selenium—-driver: firefox]
webdriver = firefox

[selenium—-driver:remote-htmlunit]
webdriver = remote

desired_capabilities = htmlunit

[selenium-driver:remote-htmlunitwithjs]

etests section to the configuration file

2.2. Selenium Driver Plugin


https://www.google.com/chrome
http://www.mozilla.org/firefox/
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home
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webdriver = remote
desired_capabilities = htmlunitwithis

[selenium-driver:remote—operal

webdriver = remote
desired_capabilities = opera
[selenium—-driver:remote—-...]
webdriver = remote

desired_capabilities =

2.2.4 Writing tests

The Web Driver is directly available with sel1f.driver and there is no need to cleanup after use, selenose will do
it for you:

import nose
from selenose.cases import SeleniumTestCase
class TestCase (SeleniumTestCase):

def test (self):
self.driver.get (" http://www.google.com’)
# Your test here...

7.

if name == '__main

nose.main ()

2.3 Combining Server & Driver

To combine a Selenium Server and a Selenium Driver plugin, just enable them both: the command_executor
option of the remote Web Driver will know the correct value to reach the Selenium Server.
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CHAPTER 3

Django Jenkins

Selenose provides two Selenium related tasks for django-jenkins:
e Selenium Server Task starts a Selenium Server before running tests, and stops it at the end of the tests.
e Selenium Driver Task provides a Selenium Web Driver to the tests.

Note that Django 1.4+ support for in-browser testing frameworks is required.

3.1 Selenium Server Task

This task starts a Selenium Server before running tests, and stops it at the end of the tests.

To enable it, edit your settings.py and append selenose.tasks.selenium_server to
JENKINS_TASKS:

JENKINS_TASKS = [
# Other tasks...
"selenose.tasks.selenium_server’,

]

If this setting does not exist yet, do not forget to create it with the default tasks:

JENKINS_TASKS = [
"django_jenkins.tasks.run_pylint’,
"django_jenkins.tasks.with_coverage’,
"django_jenkins.tasks.django_tests’,
"selenose.tasks.selenium_server’,

]

Options for Selenium Server are the same than for the nose Selenium Server Plugin. Set them in a setup.cfg
located in the current working directory, for instance:

[selenium—-server]
debug = true
log = selenium-server.log

You can also specify the path to the configuration file with the ——selenose-config option on the manage . py
jenkins command line:

$ python manage.py Jjenkins —--help
[...]
selenose.tasks.selenium_server:
—-selenose-config=SELENOSE_CONFIGS



http://seleniumhq.org/
http://pypi.python.org/pypi/django-jenkins/
http://seleniumhq.org/docs/05_selenium_rc.html#selenium-server
http://seleniumhq.org/docs/03_webdriver.html
https://docs.djangoproject.com/en/dev/releases/1.4/#support-for-in-browser-testing-frameworks
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Load selenose configuration from config file(s). May
be specified multiple times; in that case, all config
files will be loaded and combined.

In your tests, just create a new Remote Web Driver calling the server and that’s it:

from django.test import LiveServerTestCase
from selenium import webdriver
class TestCase (LiveServerTestCase) :

@classmethod

def setUpClass(cls):
cls.driver = webdriver.Remote (desired_capabilities=webdriver.DesiredCapabilities.FIREFOX)
super (BaseTestCase, cls) .setUpClass ()

@classmethod

def tearDownClass (cls):
super (BaseTestCase, cls).tearDownClass ()
cls.driver.quit ()

def test (self):
driver.get (self.live_server_url)

3.2 Selenium Driver Task

This task provides a Selenium Web Driver to Selenium tests.

To enable it, edit your settings.py and append selenose.tasks.selenium_driver to
JENKINS_TASKS:

JENKINS_TASKS = [
# Other tasks...
"selenose.tasks.selenium_server’,

If this setting does not exist yet, do not forget to create it with the default tasks:

JENKINS_TASKS = [
"django_jenkins.tasks.run_pylint’,
"django_jenkins.tasks.with_coverage’,
"django_jenkins.tasks.django_tests’,
"selenose.tasks.selenium_driver’,

But enabling this task is not enough, a Web Driver environment is also required.
The Web Driver environment are defined in a setup . cfg located in the current working directory, for instance:

[selenium—driver:sample]
webdriver = firefox

You can also specify the path to the configuration file containing the environments with the ——selenose-config
option on the manage .py jenkins command line:

$ python manage.py Jjenkins —--help
[...]
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selenose.tasks.selenium driver:
——-selenose-config=SELENOSE_CONFIGS
Load selenose configuration from config file(s). May
be specified multiple times; in that case, all config
files will be loaded and combined.
——-selenium-driver=SELENIUM_DRIVER
Enable the provided environment.

To enable an environment, use the ——selenium-driver option on the manage.py jenkins command line:

$ python manage.py Jjenkins —--selenium-driver=sample

Then the Web Driver is directly available in you tests with se1f.driver and there is no need to cleanup after use,
selenose will do it for you:

from selenose.cases import LiveServerTestCase
class TestCase (LiveServerTestCase):

def test (self):
self.driver.get (self.live_server_url)
# Your test here...

3.3 Combining Server & Driver

To combine a Selenium Server and a Selenium Driver task, just enable them both in the settings: the
command_executor option of the remote Web Driver will know the correct value to reach the Selenium Server.

JENKINS_TASKS = [
# Other tasks...
"selenose.tasks.selenium_server’,
"selenose.tasks.selenium_driver’,

3.3. Combining Server & Driver 11



selenose Documentation, Release 1.3

12 Chapter 3. Django Jenkins



CHAPTER 4

When writing tests, it’s convenient to start a Selenium Server manually to reduce setup time when running tests. To
do so, execute:

$ selenium-server
Starting... done!

Quit the server with CONTROL-C.

Then type CONTROL-C or CTRL-BREAK to stop the server.

In this case, run your tests neither with the Selenium Server Plugin not with the Selenium Server Task.

13
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