selenose Documentation
Release 1.3

ShiningPanda

October 20, 2014

Contents

Installation 3
Nose 5
2.1 Selenium Server Plugin 5
2.2 Selenium Driver Plugin 6
2.3 Combining Server & Driver e 8
Django Jenkins 9
3.1 Selenium Server Task L L 9
3.2 Selenium Driver Task L e e 10
3.3 Combining Server & Driver oL e e e e e e e 11
Tips 13

selenose Documentation, Release 1.3

Selenose provides a set of Selenium related plugins/tasks for nose/django-jenkins developed by ShiningPanda.

The use of these plugins/tasks is detailed bellow, but let’s have a look on the installation process first.

Contents 1

http://seleniumhq.org/
http://code.google.com/p/python-nose/
http://pypi.python.org/pypi/django-jenkins/
https://www.shiningpanda.com

selenose Documentation, Release 1.3

2 Contents

CHAPTER 1

Installation

On most UNIX-like systems, you’ll probably need to run these commands as root or using sudo.
Install selenose using setuptools/distribute:

$ easy_install selenose

Or pip:

S pip install selenose

It can take a while as Selenium server’s jar is downloaded on the fly during installation.

If you plan to use django-jenkins, note that Django 1.4+ is required (support for in-browser testing frameworks).

http://pypi.python.org/pypi/setuptools/
http://pypi.python.org/pypi/distribute/
http://pypi.python.org/pypi/pip/
http://pypi.python.org/pypi/django-jenkins/
https://docs.djangoproject.com/en/dev/releases/1.4/#support-for-in-browser-testing-frameworks

selenose Documentation, Release 1.3

4 Chapter 1. Installation

CHAPTER 2

Nose

Selenose provides two Selenium related plugins for nose:
* Selenium Server Plugin starts a Selenium Server before running tests, and stops it at the end of the tests.

e Selenium Driver Plugin provides a Selenium Web Driver to the tests.

2.1 Selenium Server Plugin

This plugin starts a Selenium Server before running tests, and stops it at the end of the tests.
To enable it, add ——with-selenium-server to the nose command line:

S nose —--with-selenium-server

You can also add the with-selenium-server option under the nosetests section of the configuration file
(setup.cfg, ~/.nosercor ~/nose.cfqg):

[nosetests]
with-selenium-server = true

Options for Selenium Server can be found by downloading its jar and typing:

java -jar /path/to/seleniumserver/libs/selenium-server-standalone-X.X.X.jar -h

Most common options are:
e —port <nnnn>: the port number the Selenium Server should use (default 4444),
e —log <logFileName>: writes lots of debug information out to a log file,
* —debug: enable debug mode.

To set the server options, add a selenium-server section to the configuration file (setup.cfg, ~/.noserc or
~/nose.cfqg). Option names are obtained by removing the initial dash, for instance to run:

java —jar selenium-server-standalone-X.X.X.jar -debug -log selenium-server.log

Add the following options to the configuration:

[selenium—-server]
debug = true
log = selenium-server.log

In your test, just create a new Remote Web Driver calling the server and that’s it:

http://seleniumhq.org/
http://code.google.com/p/python-nose/
http://seleniumhq.org/docs/05_selenium_rc.html#selenium-server
http://seleniumhq.org/docs/03_webdriver.html
http://seleniumhq.org/download/

selenose Documentation, Release 1.3

import nose
import unittest

from selenium import webdriver
class TestCase (unittest.TestCase) :

def test (self):
driver = webdriver.Remote (desired_capabilities=webdriver.DesiredCapabilities.FIREFOX)
try:
driver.get (' http://www.google.com’)
Your test here...
finally:
driver.quit ()

r .

if name == '__main
nose.main ()

2.2 Selenium Driver Plugin

This plugin provides a Selenium Web Driver to Selenium tests.

2.2.1 Flag Selenium tests

This plugin only provides Web Drivers to Selenium test. To declare a Selenium test:
* Either make your test case inherit from selenose.cases.SeleniumTestCase,
* Orsetaenable_selenium_driver flagto True:

class TestCase (unittest.TestCase) :
enable_selenium driver = True

2.2.2 Enable the plugin

To enable this plugin, add ——with-selenium-driver on the nose command line:

S nose —--with-selenium-driver

You can also add the with-selenium-driver option under the nosetests section to the configuration file
(setup.cfg, ~/.nosercor ~/nose.cfqg):

[nosetests]
with-selenium-driver = true

But enabling it is not enough, a Web Driver environment is also required.

2.2.3 Web Driver environment

An environment declares all the necessary parameters to create a new Web Driver.

To create a new environment sample, add a selenium-driver:sample section to the configuration file
(setup.cfqg, ~/.noserc or ~/nose.cfqg) with at least a webdriver option:

6 Chapter 2. Nose

selenose Documentation, Release 1.3

[selenium-driver:sample]
webdriver = firefox

This webdriver option defines the Web Driver to use. Here are the available values:

¢ chrome for Chrome, allowing the following options in configuration:

— executable_path (optional): path to chromedriver executable,

— port (optional),

— desired_capabilities (optional),

» firefox for Firefox, allowing the following options in configuration:

— timeout (optional),

¢ ie for Internet Explorer, allowing the following options in configuration:

— port (optional),
— timeout (optional),

¢ remote to delegate to a Selenium Server (started by Selenium

Server Plugin?), allowing the following options in configur:

— command_executor (required): url of the server (http://127.0.0.1:4444/wd/hub by

default),

— desired_capabilities (required): the desired browser, it could be the lower case field name of
selenium.webdriver.DesiredCapabilities such as firefox, htmlunitwithjs...

or a comma separated key/value list such as browserN

ame=firefox,platform=ANY

To enable an environment, add ——selenium—driver on the nose command line:

S nose —-with-selenium-driver --selenium-driver=sample

You can also add the selenium-driver option under the nos
(setup.cfg, ~/.nosercor ~/nose.cfqg):

[nosetests]
with-selenium-driver = true
selenium-driver = sample

[selenium—driver:sample]
webdriver = firefox

Selenose also provides a set of predefined but overridable environments:

[selenium—-driver:chrome]
webdriver = chrome

[selenium—-driver:ie]
webdriver = ie

[selenium—-driver: firefox]
webdriver = firefox

[selenium—-driver:remote-htmlunit]
webdriver = remote

desired_capabilities = htmlunit

[selenium-driver:remote-htmlunitwithjs]

etests section to the configuration file

2.2. Selenium Driver Plugin

https://www.google.com/chrome
http://www.mozilla.org/firefox/
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home

selenose Documentation, Release 1.3

webdriver = remote
desired_capabilities = htmlunitwithis

[selenium-driver:remote—operal

webdriver = remote
desired_capabilities = opera
[selenium—-driver:remote—-...]
webdriver = remote

desired_capabilities =

2.2.4 Writing tests

The Web Driver is directly available with sel1f.driver and there is no need to cleanup after use, selenose will do
it for you:

import nose
from selenose.cases import SeleniumTestCase
class TestCase (SeleniumTestCase):

def test (self):
self.driver.get (" http://www.google.com’)
Your test here...

7.

if name == '__main

nose.main ()

2.3 Combining Server & Driver

To combine a Selenium Server and a Selenium Driver plugin, just enable them both: the command_executor
option of the remote Web Driver will know the correct value to reach the Selenium Server.

8 Chapter 2. Nose

CHAPTER 3

Django Jenkins

Selenose provides two Selenium related tasks for django-jenkins:
e Selenium Server Task starts a Selenium Server before running tests, and stops it at the end of the tests.
e Selenium Driver Task provides a Selenium Web Driver to the tests.

Note that Django 1.4+ support for in-browser testing frameworks is required.

3.1 Selenium Server Task

This task starts a Selenium Server before running tests, and stops it at the end of the tests.

To enable it, edit your settings.py and append selenose.tasks.selenium_server to
JENKINS_TASKS:

JENKINS_TASKS = [
Other tasks...
"selenose.tasks.selenium_server’,

]

If this setting does not exist yet, do not forget to create it with the default tasks:

JENKINS_TASKS = [
"django_jenkins.tasks.run_pylint’,
"django_jenkins.tasks.with_coverage’,
"django_jenkins.tasks.django_tests’,
"selenose.tasks.selenium_server’,

]

Options for Selenium Server are the same than for the nose Selenium Server Plugin. Set them in a setup.cfg
located in the current working directory, for instance:

[selenium—-server]
debug = true
log = selenium-server.log

You can also specify the path to the configuration file with the ——selenose-config option on the manage . py
jenkins command line:

$ python manage.py Jjenkins —--help
[...]
selenose.tasks.selenium_server:
—-selenose-config=SELENOSE_CONFIGS

http://seleniumhq.org/
http://pypi.python.org/pypi/django-jenkins/
http://seleniumhq.org/docs/05_selenium_rc.html#selenium-server
http://seleniumhq.org/docs/03_webdriver.html
https://docs.djangoproject.com/en/dev/releases/1.4/#support-for-in-browser-testing-frameworks

selenose Documentation, Release 1.3

Load selenose configuration from config file(s). May
be specified multiple times; in that case, all config
files will be loaded and combined.

In your tests, just create a new Remote Web Driver calling the server and that’s it:

from django.test import LiveServerTestCase
from selenium import webdriver
class TestCase (LiveServerTestCase) :

@classmethod

def setUpClass(cls):
cls.driver = webdriver.Remote (desired_capabilities=webdriver.DesiredCapabilities.FIREFOX)
super (BaseTestCase, cls) .setUpClass ()

@classmethod

def tearDownClass (cls):
super (BaseTestCase, cls).tearDownClass ()
cls.driver.quit ()

def test (self):
driver.get (self.live_server_url)

3.2 Selenium Driver Task

This task provides a Selenium Web Driver to Selenium tests.

To enable it, edit your settings.py and append selenose.tasks.selenium_driver to
JENKINS_TASKS:

JENKINS_TASKS = [
Other tasks...
"selenose.tasks.selenium_server’,

If this setting does not exist yet, do not forget to create it with the default tasks:

JENKINS_TASKS = [
"django_jenkins.tasks.run_pylint’,
"django_jenkins.tasks.with_coverage’,
"django_jenkins.tasks.django_tests’,
"selenose.tasks.selenium_driver’,

But enabling this task is not enough, a Web Driver environment is also required.
The Web Driver environment are defined in a setup . cfg located in the current working directory, for instance:

[selenium—driver:sample]
webdriver = firefox

You can also specify the path to the configuration file containing the environments with the ——selenose-config
option on the manage .py jenkins command line:

$ python manage.py Jjenkins —--help
[...]

10 Chapter 3. Django Jenkins

selenose Documentation, Release 1.3

selenose.tasks.selenium driver:
——-selenose-config=SELENOSE_CONFIGS
Load selenose configuration from config file(s). May
be specified multiple times; in that case, all config
files will be loaded and combined.
——-selenium-driver=SELENIUM_DRIVER
Enable the provided environment.

To enable an environment, use the ——selenium-driver option on the manage.py jenkins command line:

$ python manage.py Jjenkins —--selenium-driver=sample

Then the Web Driver is directly available in you tests with se1f.driver and there is no need to cleanup after use,
selenose will do it for you:

from selenose.cases import LiveServerTestCase
class TestCase (LiveServerTestCase):

def test (self):
self.driver.get (self.live_server_url)
Your test here...

3.3 Combining Server & Driver

To combine a Selenium Server and a Selenium Driver task, just enable them both in the settings: the
command_executor option of the remote Web Driver will know the correct value to reach the Selenium Server.

JENKINS_TASKS = [
Other tasks...
"selenose.tasks.selenium_server’,
"selenose.tasks.selenium_driver’,

3.3. Combining Server & Driver 11

selenose Documentation, Release 1.3

12 Chapter 3. Django Jenkins

CHAPTER 4

When writing tests, it’s convenient to start a Selenium Server manually to reduce setup time when running tests. To
do so, execute:

$ selenium-server
Starting... done!

Quit the server with CONTROL-C.

Then type CONTROL-C or CTRL-BREAK to stop the server.

In this case, run your tests neither with the Selenium Server Plugin not with the Selenium Server Task.

13

	Installation
	Nose
	Selenium Server Plugin
	Selenium Driver Plugin
	Combining Server & Driver

	Django Jenkins
	Selenium Server Task
	Selenium Driver Task
	Combining Server & Driver

	Tips

